@Pranov_Mishra wrote:
Is there a way to improve the specificity/sensitivity for a linear discriminant analysis like we do in a logistic model by changing the threshold of the classification.
I am doing it in r
mydata=read.csv(“weather.csv”)##[Link to download the file = https://www.biz.uiowa.edu/faculty/jledolter/DataMining/dataexercises.html]###
####Missing value Imputation using kNN
install.packages(“VIM”, dependencies = TRUE)
library(VIM)#Which variables have missing values
colnames(mydata)[colSums(is.na(mydata)) > 0]
mydata_imputed=kNN(mydata,variable = colnames(mydata)[colSums(is.na(mydata)) > 0],k=5)
colSums(is.na(mydata_imputed))mydata_imputed=mydata_imputed[,1:24]
library(caret)
set.seed(1234)
Index=createDataPartition(mydata_imputed$RainTomorrow,p=0.75,list = FALSE)
Train=mydata_imputed[Index,]
Test=mydata_imputed[-Index,]library(MASS)
LDAModel1=lda(RainTomorrow~., data = Train[,-c(1:2)])
LDAModel1Pred=predict(LDAModel1, Test)
CM=confusionMatrix(Pred$class,Test$RainTomorrow)
fourfoldplot(CM$table)
Acc_LDA=CM$overall[[1]]
Acc_LDA
Sensitivity_LDA=CM$byClass[[1]]
Sensitivity_LDA
Specificity_LDA=CM$byClass[[2]]
Specificity_LDA
###Specificity needs to be improved
Posts: 1
Participants: 1